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Linearized acoustic theory is applied to the calculation of the thickness noise
produced by a supersonic propeller with sharp leading and trailing edges. The
theoretical development is summarized and numerical calculations of the pres-
sure-time waveform are presented. The erratic behaviour of previous time-domain
calculations has been completely eliminated by careful numerical treatment of
singular points, multiple singular points and nearly singular points that appear in the
analysis. This allows a close inspection of the details of the calculated waveform and
leads to the discovery of abrupt changes of slope in the pressure-time waveform,
produced by singular points entering or leaving the blade at the tip. The behaviour
of the pressure-time waveform is shown to be closely related to changes in the
retarded rotor shape. Logarithmic singularities in the waveform are shown to be
produced by regions on the blade edges that move towards the observer at sonic
speed while at the same time having the edge normal to the line joining the source
point and the observer. The logarithmic singularities are closely related to the shock
waves produced by a swept airfoil in supersonic rectilinear motion, and they can be
eliminated throughout the entire flow field by sweeping the rotor so that the Mach-
number component normal to the leading and trailing edges is subsonic for all points
on the rotor edges.

1. Introduction

The production of sound by a propeller due to the blade thickness is problem of
current interest. A propeller achieves improved efficiency relative to typical turbofan
aeroengines since a significantly greater rotor diameter is practical, but the
production of noise is a significant drawback. This problem has received much
attention in the literature, including the papers of Hawkings & Lowson (1974),
Lowson & Jupe (1974), Farassat & Suceci (1980), Farassat (1983, 1984, 1986), Hanson
(1976, 1980), Schmitz & Yu (1986) and others. Much of the notation here follows that
of Hanson (1976). These previous papers did not examine the detailed shape of the
pressure—time waveform and its relation to the retarded blade shape. The accurate
calculation of the pressure field has presented difficulties. Singular points and points
that are nearly singular, if improperly treated, lead to erratic results in the
calculations. Although the previous calculations may be satisfactory for acoustic
predictions, the accuracy of the present prediction gives a better understanding of
the sound production process.

The mathematical formulation of the problem is quite straightforward, although
this may be obscured somewhat in the literature by several reformulations that
attempt to avoid computational difficulties. The present analysis begins with the
simplest formulation, accepting the computational difficulties, and uses appropriate



536 R. K. Amaet

numerical techniques to properly treat the difficult areas. Thus, rather than
reformulate the problem to avoid integrable singular points, the singular integrals
are evaluated in a straightforward manner using techniques appropriate to the type
of singularity.

The present calculation considers only the case of blade thickness. The loading or
dipole case is not considered, but is quite easily included by replacing the expression
for a monopole by that for a dipole in the analysis, assuming the dipole strengths are
given. Because the retarded blade shape, which is critical in determining the radiated
pressure field, does not depend on the source type, the dipole sound due to steady
loading is not expected to introduce new effects. Axial mean flow is assumed and the
blade thickness is simulated by monopoles placed on the helix, rather than on the
actual blade surface, following standard linearized theory. Sharp leading and trailing
edges are assumed. It should be possible to treat the blunt-edge case following a
similar analysis; this case is expected to show the same close relation to the
rectilinear motion case as does the sharp-edge case. The major factors have been
retained, resulting in an improved understanding of the sound generation and several
characteristics unique to this problem.

Some researchers may prefer a frequency-domain analysis, rather than the time-
domain analysis presented here. Thus, Hanson’s more recent treatment (1979) is in
the frequency domain rather than the time domain used previously (1976). There are
arguments for each approach. The frequency-domain approach avoids some of the
numerical complexity of the time domain. However, if the results of the frequency
domain are inverted back to the time domain, the singular peaks and abrupt slope
changes in the pressure-time waveform require many frequency terms to get
comparable resolution. An understanding of the origin of these singularities provides
a promising avenue for noise attenuation. Although Tam (1983) analyses the case of
an airfoil with a blunt leading edge in the frequency domain and is able to derive the
singular behaviour for this case, the present author feels that a time-domain analysis
gives a more physical understanding of these singularities and their point of origin
on the blade. It will be seen that for any given observer position the singularities
originate from a small region of the blade edge. Because a Fourier decomposition of
the blade source term is made in the frequeney-domain analysis, it becomes difficult
to determine detailed source locations. Moreover, it seems more natural to regard the
problem in the time domain since the waveforms from successive rotor passes are
essentially independent non-overlapping pulses. Analysing the problem as a series of
harmonics based on blade passage frequency may be relevant to the listener, but the
introduction of the additional variable, blade passage frequency, has no direct
relation to the properties of an individual pulse.

The formal solution to the problem is presented in §2. The behaviour of the
resulting integral (which must be evaluated numerically) near certain singular points
that arise is analysed in §3. The relation to a previous result of Taylor, Lamb and
Hilton is given in §4. A brief description of the calculation procedure is given in
§5 and the calculated results are analysed in §6. The case of zero sweep is first
presented followed by cases with sweep, first a small amount then a more significant
amount. Sweep is useful for eliminating logarithmic singularities in the pressure—time
waveform caused by rotor edges having a supersonic relative velocity normal to the
edge. Another type of behaviour characteristic of this problem is the occurrence of
sudden changes of slope in the pressure-time waveform; the origin of these is
explained in the analysis.

The present paper deals only with theory and does not make comparison with
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experimental measurements. The object is to present a rigorous analytical and
numerical result, showing the detailed behaviour of the exact linearized solution.
This is shown to agree with a previous calculation of Hanson that gave the general
form of the solution, but not the fine detail. For comparison of the linearized solution
with experiment, the author is referred to the papers of Hanson (1979) or Schmitz &
Yu (1986). These references show limitations of the linearized solution, especially
where transonic effects become important. By clarifying and more rigorously
investigating the linearized solution, it is hoped that the present paper will help form
the basis for future investigations into these nonlinear effects.

2. Analytical formulation and solution

The simplest case of a propeller moving along a helical path without crossflow is
analysed. The helix is formed by straight line generators; i.e. the intersection of the
helix with the plane x = constant is a straight line. The rotor blade is assumed to lie
close to this helix ; the sources used to represent the blade can then be assumed to lie
in the helix, a standard linearized-flow assumption. The rotor hub moves along the
z-axis as shown in figure 1. The leading edge of the rotor can be any curve, although
initially it will be assumed to be a straight line coinciding with the y-axis at time
t =0. The chord ¢ of the rotor can be a function of radius but is here assumed
constant, and the blade thickness is denoted by %(-) with 2(0) denoting the leading
edge and &(c) the trailing edge. The thickness also can be a function of radius, but is
set to zero at the leading and trailing edges; i.e. the edges are sharp. For any given
radius 7, the parameter vy is used to measure the distance along the helix. The y-
coordinate is fixed with the helix. It is set to zero on the y axis, and is positive in the
downstream direction of the helix. Thus, y = 0 coincides with the airfoil leading edge
only at ¢ = 0, as shown in figure 2. The observer is assumed to be fixed to the ambient
fluid, the propeller moving past him. The helical surface along which the blade moves
is then fixed with respect to the observer. The observer is taken to lie in the z =0
plane; this loses no generality since the observer’s z-position and time can be
appropriately adjusted to give a situation equivalent to an arbitrary z-position.

The far-field pressure is written using the linearized form of the result of Curle

(1955),
ain= o on v YB_28 [ t_L)@ 1)
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where S represents the surface that generates the sound, p,; is the surface stress, v,
is the normal surface velocity, ¢, is the sound speed, =, is the surface normal, p, is
the free-stream density and r is the distance from source to observer. The airfoil is
assumed to have no loading so that the force term is zero, leaving only the first term
in (1). The second term could be included, if p;; were known, but the integration
would be over the same retarded surfaces as for the first term, giving much the same
basic behaviour. Since the source term in the above equation has an arbitrary time
dependence, a moving body can be represented by stationary sources turning on and
off to represent the flow field generated by a body moving past.

Relative to the blade, the fluid velocity normal to the surface is equal to the local
fluid velocity relative to the body surface times the body slope along the direction of
the velocity. Because the perturbations are assumed small, the fluid velocity along
the helical surface relative to the rotor is set equal to the negative of local rotor
velocity ; that is, relative to the helix the local fluid does not move in the airfoil plane
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Ficure 1. Helical path of path of propeller in the fluid-fixed coordinate system showing the
origin of the y-variable relative to the blade leading-edge position at time ¢ = 0.
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Ficurg 2. Thickness distribution of the blade (shown to scale) used for all calculations in this
paper. Position of the blade leading edge relative to the v-axis is shown.

to lowest order. Using the coordinate y the airfoil thickness for a given radial station is
h(y—7y,+Ut, r,). Equation (1) for the pressure can then be written
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r, is the radial position on the rotor, s is the rotor span, U is the velocity of the blade
segment relative to the fluid and 7,(r,) is the y-distance of the airfoil leading edge
from the y-axis at ¢ = 0; for a straight blade y, = 0. In effect, 7, is a phasing term
to account for sweep; the sound for any given dr, blade segment can be calculated
by assuming y = 0 at ¢ = 0 and then time shifting to the actual y-value using y,. The
distance R of the observer to a point ry, ¥ on the helix is

2
R? = (x+ZUK) +y?+7i—2yr, cos (%) 4)

The velocity V represents the forward flight speed along the z-axis. For a rotor with
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a radian velocity £2, the azimuthal velocity at a radius r, is Qr, and U? = V24 Q%2
The vy-integration in (3) is taken over the entire y-range, —c0 <y < co0. For any
given time the y-values satisfying f = 0 and f = ¢ represent retarded positions of the
airfoil leading edge and trailing edge respectively. (The curves of r, = constant
and y = constant are not orthogonal since y = constant does not represent a line
of constant azimuthal angle #. Nevertheless, the figure enclosed by the lines
79, 7o +d79, ¥, and y +dy is a parallelogram, the height given by dr, and the base by
dy; the differential area is dr,dy, as required in (2).) The first form of (2) for the
pressure was used by Hanson (1976), and much of the notation here follows that
paper, but the present calculation is based on the second form.

The second relation in (2) results from taking the time derivative under the
integrals where it operates on Ut in the argument f. Although both forms should give
identical answers, the second form is used since the integrals are rather sensitive to
errors, and it should be preferable to use a form that does not need to have the time
derivative taken after numerical evaluation of the integral. However, the integrand
of the second form becomes infinite at the airfoil leading and trailing edges since A”
is infinite here; A’ is finite since the airfoil is assumed to have sharp leading and
trailing edges. This would make the second form of (2) more difficult to evaluate,
except for the fact that the difficult points are much more evident and can be
properly accounted for, whereas in the first form the integral may appear easier, but
difficulties arise on taking the derivative.

The infinity of 2” at the leading and trailing edges is eliminated by performing the
vy-integral after introducing the delta function form

B (y 1) = B (0,74) 8(y)+ ki (y, 7o) — ' (c, 74) 8(y —¢). (5)

The derivatives of the thickness, A'(0,7,) and &’(c,r,), represent the total angle
between tangents to the upper and lower surfaces at the airfoil edges. A" at the
leading edge is positive and A’ at the trailing edge is negative. A7 is assumed to be zero
ahead of the leading edge and behind the trailing edge, and there is at most a finite
discontinuity in A{ at the edges. Equation (5) gives the correct result for A" and % if
integrals of A" over y are performed.

With the substitution of (5), equation (2) becomes

2 s 0 ’ ’
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The integrand of the double integral is always finite. The integrands of the single
integrals become infinite when the denominators become zero; i.e. when

of oR

Al =-M. == 7

3 1—-M, 5 0 (7)
with the constraint f= e, (8)

where the notation {c¢) is defined to be 0 for the leading edge and c for the trailing
edge. The solution of (8) is the y-value for the given f and r, that lies on the leading
or trailing edges. The locus of all such points for 7-values between the hub and the
tip (0 < r, < s) is the retarded blade shape, shown in figures 6, 11 and 13. Points on
the blade edge satisfying (7) are moving towards the fluid-fixed observer at a relative
Mach number of one. These might be expected to be very significant points, but in
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the analysis to follow it is shown that this depends greatly on the blade sweep at the
points.

3. Behaviour of the integrand near a singular point
3.1. Case of an integrable singular point

The last two terms in the integrand of (2) become infinite at singular points given by
(7). This could create convergence problems for the r,-integration if the behaviour
near a singular point were of a power equal to or stronger than ryt. It is shown below
that the behaviour near a singular point is r;# with one exception as noted.

Consider the second term in the integrand of (7). (The third term is treated in the
same manner.) Since this term is subject to the condition f=0, it follows that
between any two points on the leading edge

Af = 0= Aly~y,)~ M, AR+ (cyt— R)AM,. 9)

In this equation the variation AR for variations Ay and Ar, is written using a

Taylor’s series as
oR 10°R

oR
R= =—— 24— 10
The derivatives in (10) are to be evaluated at the singular point given by (7).
Substitution of (10) into (9) and using (3) with f = 0 gives for the behaviour on the
leading-edge edge near the singularity

82R [ aR (y—7v0) M3 70M
a

where M, = Qr,/c,. Also, AM, was evaluated in terms of Ar, and Ay using M? =
V2/ci+ M2; locally the sweep parameter vy, is assumed to vary linearly with 7; i.e.
Ay,/Ar, = x. Equation (11) shows that, for points on the edge, Ay and Ar, are related

b 1
y Ay ~ (Arel (12)

near the singular point. The behaviour of the second or third terms of (6) near the
singular point is now found by expanding the denominator in a Taylor’s series and
using (12). Since R|3f/3y| = 0 at the singular point, this gives for the denominator

sl ezl

where C, and C, are non-zero constants. Near the singular point this expansion of the
denominator shows the dominant behaviour of the second or third term in the
integrand of (6) to be (Aro)’%. This was previously found by Amiet (1977) from
numerical calculations near the singular points. Thus, (6) is integrable over r, at the
singular points, except as noted below. Nevertheless, the position of the singular
points must be determined when numerically evaluating the integral, since special
precautions are required for integration near singularities. Farassat (1983) has also
investigated the behaviour of the integrand near the singular points. The notation is
different enough that no direct comparison with the present result is readily possible,
but the statement is made that the line integrals are integrable, which agrees with
the above result, but overlooks the special case noted below.

+X]Ar0 =0, (11)

)Aro = O, (Ary)i+Cy Arg+ ..., (13)
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3.2. Case of a non-integrable singular point

This inverse square-root behaviour near a singular point no longer holds if the
coefficient of Ar, in (11) becomes zero. The condition for this is

_ 2
u B r=v) M,

"o, ro M2 +x=0. (14)

When this holds, Ay ~ Ar, and the denominator in (13) varies linearly with r, to
lowest order. This produces an 7,* behaviour of the integrand, leading to a
logarithmic singular behaviour near certain points in the pressure-time waveform
which is evident in the figures to be shown. This behaviour was previously mentioned
by Hawkings & Lowson (1974) who deduced the behaviour from the fact that when
the calculations are made in the frequency domain, the asymptotic behaviour of the
nth harmonic at these points is n~*. The logarithmic behaviour is also stated without
proof by Farassat (1986).

An analytical expression for the far-field pressure near the logarithmic singularity
could be derived from appropriate expansions at a time very near the logarithmic
singularity, following the above line of analysis. The result appears to be somewhat
involved, and would probably be of little use; the singularity is only logarithmic and
one must be quite near the singularity in order for this logarithmic behaviour to
dominate the first term in the integrand, which cannot generally be evaluated in
closed form. The analysis was carried out far enough to demonstrate the logarithmic
behaviour In (t—¢,), where ¢, is the time of occurrence of the logarithmic singularity.
Note that [In (¢—¢,)]* is integrable in time, assuring a finite value for the acoustic
energy at the logarithmic singularities.

It should be emphasized that the term ‘singularity’ is being used in two different
ways. The first usage denotes a singularity in the integrand of (6). If this is integrable
over r,, the second type of singularity w1ll not appear. Equation (13) gives the
behaviour of the integrand as, generally, ro ; however, at certain values of r, and ¢
the behaviour of the integrand becomes 75!, leading to a logarithmic singularity in
the pressure-time waveform. To distinguish between these two uses of singularity,
the second type will always be denoted by the term ‘logarithmic singularity’.

Equation (14) can give physical insight into the sound generation process.
However, the variable y has no simple relation to the geometry of the rotor; the
equation becomes much clearer if reformulated in terms of the independent variables
7, T Tather than the variables r,,y, where

Y=Y =—Ur; (15)

v = v, at t = 0 for points on the leading edge, by definition of y,. At later times, for
points on the leading edge the value of v—v, depends on r, whereas 7 is a function
only of time. Thus, a partial derivative with 7 = constant is a derivative taken along
the edge. Transforming from ry,y to 7y, 7 gives

a_R_
or,

_or
~ or,

a_R
or

or
To aro

. (16)
7 ¥

Y

Figure 3 illustrates the blade orientation relative to the observer at the time of a
logarithmic singularity. It is shown as a plane figure (M, = x = 0) for simplicity
only; the analysis does not require this. Line 4B denotes the tangent to the blade
leading edge at point D. 04 is the blade reference line that coincides with the y-axis

18-2
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Ficurg 3. Position of the blade at the retarded time that produces a logarithmic singular point
in the pressure-time waveform.

att = 0. Lines 04 and 4B need not be coincident with the rotor leading edge, except
at point D, but for clarity it may be easier to think of the rotor leading edge as being
composed of these two segments. The lines AB and @D are drawn normal to one
another ; this will be shown to be necessary if point D is a solution to (14). Taking the
derivative of (15) with y kept fixed and noting that U? = V2 + Q%2 gives

or
or,

TM:
=—2t A 1
Tty (17)

Y

where y = 0y,/0r,. The derivative 0R/07 in (16) is found from (7); with the
transformation in (15) this becomes

ok

a = —Cq. (18)

To

Introducing (17) and (18) into (16) and using the result to replace the derivative in
(14) cancels the second and third terms in that equation, leaving

oR

o,

= 0. (19)

T

This is simply a restatement of (14) in a more suitable coordinate system. It shows
that the change of R for small changes of position along the rotor edge is zero at
location D where the logarithmic singularity is produced. That is, the line R from the
observer at @ to the source point D is normal to the leading edge. If (7) alone is
satisfied at some point D, there will be a singular point at D in the r,-integral of (6).
Equation (7) always has a solution (at some time) for points on the blade at a radius
greater than the minimum sonic radius. This does not guarantee a singular point in
the pressure-time waveform; only if (19) is also satisfied will a singular point be
produced upon integration of (6). Thus, for a given observer position a logarithmic
singularity is produced by some point D on the edge if the Mach number of the
segment is sonic relative to the fluid-fixed observer and the blade edge at D is normal
to the line from the observer to D.
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3.3. Discussion of the singularities

The effect of sweep on the reduction of a propeller harmonic was previously
attributed to phasing of the various spanwise segments (Hanson 1980). This is a
satisfactory description, but the present analysis gives a more physical description
in terms of the component of relative Mach number M normal to the edge. With a
little thought it becomes evident that if M, > 1 at any point D on the edge, then this
point produces a logarithmic singularity at some point in the field. To see this, let the
observer lie instantaneously in the plane normal to the edge at point D. In this plane
the maximum Mach number of point D relative to the fluid fixed observer is M. If
the observer moves in this plane towards the xz-axis, the relative Mach number of
point D decreases until it reaches the value 1; here the observer sees a logarithmic
singularity since the edge is still normal to the line from the observer to D, satisfying
(7) and (19). Thus, the faster moving outboard portion of the rotor tends to beam the
sound up more towards the x-axis, just as the shock angle produced by an airfoil in
rectilinear motion becomes smaller and the angle of propagation is in a more upward
direction as the velocity increases. To eliminate logarithmic singularities from the
entire flow field requires a subsonic edge, M, < 1, for the entire rotor.

For illustration, consider the case M, = 0, a rotor with no forward velocity, and
determine the minimum blade sweep that avoids logarithmic singularities. An
observer in the plane « = 0 places the strongest restriction on the blade shape since
only in this plane will the Mach number in the direction of the observer reach its
maximum. A line from the observer to any point on the rotor leading edge is normal
to the leading edge at some time during the rotor rotation. Denoting the local blade
sweep by v(r,) as in figure 3 (where v is measured from the normal at D so that
v = 0 —e¢), the Mach number in the direction of the observer at this time is M, cosv.
The above discussion shows that there is no logarithmic singularity if and only if for

all values of r,
M,cosv <1, (20a)

where M, = £2r,/¢,. The minimum sweep that still avoids a logarithmic singularity
follows by taking the equality in (20a). The local sweep is related to infinitesimal

changes dr, and df b
8 0 y dr, = (r,df) cot v. (200)

Equation (20b) with an equality in (20a) gives for a blade shape with minimum
sweep . .
0=Mi—1):—tan" ' (M3—1)-. (20¢)
Using linear analysis to calculate the pressure produced by this blade shape may give
somewhat inaccurate results; every point on the edge of the blade is essentially
transonic since the Mach-number component normal to the edge has the value one,
and a transonic theory may be needed.

The above argument for the case M, = x =0 is easily generalized to the case
M, % 0. Considering a particular rotor radius r,, if a plane is drawn normal to leading
edge at this point an observer will find that in this plane the maximum value of the
rotor Mach number M relative to the fluid-fixed observer is

M, = [(M, cosv)®+M2Js, (21)

where the sweep angle v is defined as the angle between two planes, both normal to
the x = 0 plane, with one tangent to the blade leading edge at the point 7, and the
second passing through the z-axis and the point r, on the leading edge; (20b) is
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congistent with this definition. There will be no logarithmic singularity if M <1,
giving (M,/B) cosv < 1, where p* =1—M2. The rest of the derivation follows as
before with the result that in (20¢) M, becomes M,/f.

Comparison with the two-dimensional case of a swept airfoil is very helpful. If an
infinite-span airfoil moves rectilinearly at supersonic speed but is swept so that the
velocity normal to the leading edge is subsonic, then, ignoring boundary-layer
effects, one can translate parallel to the airfoil, eliminating the spanwise flow
component and making the problem subsonic. One might calculate the sound from
such an airfoil by integration over the span, just as is done here. For a fluid-fixed
observer the integration produces ‘singular points’ where the relative Mach number
of that spanwise segment is sonic relative to the observer. However, since the far-
field pressure perturbation of an airfoil moving rectilinearly at subsonic speed is zero,
these local singular points have no particular significance. There will be significant
phasing differences between the various spanwise segments giving noise cancellation,
whereas if the problem were calculated in a coordinate system in which the airfoil
moved normal to its leading-edge line, there would be no need for this phasing
interpretation.

This singular behaviour can be compared to a shock wave from the edge such as
occurs for a two-dimensional airfoil in supersonic flow. This should be considered a
qualitative analogy, however, since the pressure field calculated for linearized flow
over a two-dimensional airfoil does not give an infinite pressure at the shock; rather
only a jump in pressure is predicted. The logarithmic singularity of the rotor case is
a focusing of the Mach-wave pressure field not present in the two-dimensional case.
Nevertheless, the criterion for a logarithmie singularity for the rotor case is the same
criterion for an observer to lie on the shock produced by an airfoil in rectilinear
motion. That is, the observer lies on the shock at that time when the airfoil at the
retarded position is moving towards the observer at a relative Mach number of one.
Also, the requirement that M <1 for all r, to eliminate logarithmic singularities
throughout the fluid is the same criterion for a swept airfoil in rectilinear motion to
produce no shock.

The predictions for the rotor problem near the logarithmic singularities must be
regarded as inaccurate to some degree since an infinite pressure cannot actually exist.
This is another reason for favouring the time-domain approach over the frequency-
domain approach. Since the linearized solution must be in error near the logarithmic
singularities, these points are easily excluded from comparisons with experiment
when in the time domain. In the frequency domain, however, the errors made near
the logarithmic singularities are mixed throughout the spectrum, and the only way
to remove them is to perform a Fourier inversion to the time domain. This may not
be especially important in practice since a rotor should be designed to avoid the
logarithmic singular points; also the logarithmic singularities are integrable, giving
only finite acoustic energy. Nonlinear propagation may also be easier to account for
using the time-domain approach. The inaccuracy in the linearized solution for the
prediction of the logarithmic singularities was noted by Hanson (1979) by comparison
with data, although the singular behaviour at these points was not noted.

A singular point entering or leaving the rotor at the tip also produces a significant
effect worth consideration. The singular points change their radial position on the
blade during the rotation of the rotor. Since their velocity along the edge is affected
by the blade velocity, sweep and observer position, but not the presence of the tip,
their velocity at the tip is generaly non-zero, and one might expect a significant effect
as a singularity moves past the tip. In fact, this phenomenon leads to abrupt changes
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in the slope of the pressure-time waveform. The further description of this effect is
delayed until §6.3, after the figures showing the movement of the singular point
along the edge are presented.

4. Relation to the Taylor, Lamb, Hilton result

The pressure wave produced by the logarithmic singularity can be related to the
wave discussed by Hilton (1938) who presents an analytical description (attributed
to G. 1. Taylor and H. Lamb) of the shape of the wave propagating at the sound
speed away from the rotor and rotating with the angular velocity € of the rotor.
Hilton considers the singular wave produced in the rotor plane by a single source
point rotating supersonically in a circle with zero forward velocity. This produces
two branches of the wave, one that moves outward from the source and one that
moves inward towards the hub until reaching the sonic circle ; here a cusp is produced
and the wave again moves outward. A single source thus leads to two singular waves
propagating to the far field.

For the cases considered here there are two source regions, one on the leading edge
and one on the trailing edge. Each leads to only one singular wave, as is evident from
the pressure-time waveforms at the observer, to be shown later; two logarithmic
singularities are shown in figures 9 and 12, one arising from the leading edge and one
from the trailing edge. For a straight blade, the source region is at the sonic circle (at
the cusp described by Hilton); thus, the wave does not propagate inward from the
source region and only a single wave is produced. For the swept-blade case, the
region inboard of the source region is effectively moving subsonically owing to the
sweep, and again only a single wave is produced. The present analysis shows that a
single source is insufficient to define the wavefront ; rather, it is necessary to know the
distribution of sources in a region to understand the noise generation potential of
that region. This is just a restatement of the fact that an airfoil moving at sonic speed
towards the observer may or may not be an important noise source, depending on the
sweep angle of the edge. This is acknowledged by Hilton, in effect, because of the
obvious difficulty in determining which source, from all those on the airfoil surface,
to use in determining the wavefronts that he measures. Hilton notes that the analysis
of Taylor does not require the specification of a particular source, but that at the
same time, the angular position at which to begin the wavefront is undetermined.
This leads him to the comment ‘It is better to regard these spiral curves as the only
wave pattern which can rotate about the hub without change of shape, and to leave
the relative positions of the airscrew blade and wave pattern to be determined by
experiment’. The present paper gives the means to locate these spiral curves in
relation to the rotor, at least to the accuracy permitted by the assumption of
linearized flow.

It should be emphasized that the present derivation considers only the case of an
airfoil with a sharp leading edge. Whereas Hilton places the source of the singular
wave at the supersonically moving tip, for the present case the tip does not lead to
such a singular wave; for a sharp leading edge the tip will later be shown to produce
an infinite slope in the pressure-time plot at the time that the tip moves towards the
observer at a Mach number of one (at the time a singular point moves past the tip),
not a pressure jump or an infinite pressure. For the case of an airfoil with a finite
leading-edge radius, however, the possibility of such a source at the tip cannot be
excluded. In fact, the analysis of Tam (1983) suggests that pressure jumps may be
produced by the tips of rotors with a finite leading-edge radius.
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FicURE 4. Path of the singular wave propagating away from the blade.

The construction procedure for the curve of the singular wavefront helps clarify its
generation when one notes that the wavefront is produced at that time when the edge
is normal to the source—observer line and moves at sonic speed towards the observer.
The construction procedure given by Lowson & Jupe (1974), which involves drawing
a series of circular arcs with centres on the moving source point, is consistent with
this generation process. For the straight-blade case with M_ = 0 and the observer in
the rotor plane, the present analysis shows that the source of the singular wave
moves sonically. The curve in figure 4 is constructed by specifying the propagation
distance of the wave, BD, to be equal to the length of arc 4B through which the
source has moved. Since the distribution of sources along the edge is normal to the
source—observer line, the wavefront at its point of origin, B, is normal to this line.
Because a wave propagates along its normal, this wave propagates to point D,
defining the wavefront at D.

In figure 4 the wave at 4 is parallel to the leading edge, 04, of the straight blade.
For the swept-blade case the wave is again parallel to the airfoil edge at the singular
point on the blade, which is the origin of the wave. Just as for the straight-blade case
this follows from the fact that the logarithmic singularity is produced by that point
on the blade that moves towards the observer at sonic speed while having the edge
normal to the source—observer line. The wave produced moves at sonic speed along
a line normal to the wave. Since its direction of propagation must be towards the
observer if it is to reach the observer, the wavefront is parallel to the edge at the
point of generation.

5. The general method of calculation

A computer program for performing the integrations in (6) has been developed.
This is a difficult programming task as is evident from the previously calculated
results for this problem. For example, Farassat (1986) in his figure 3 compares results
of a previous calculation with an improved calculation procedure. The improved
procedure produces much better results, but the curves are still not perfectly smooth.
Amiet (1977) points out the difficulties inherent in the time-domain calculation and
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improves upon a previously calculated result of Hanson, but does not completely
eliminate the errors. These errors can mask some of the behaviour to be discussed
here, such as changes of slope that would be difficult to discover without an accurate
prediction scheme. Without a reliable calculation, one is not certain whether the
ragged prediction is due to numerical inaccuracies or inherent in the solution.

An alternative approach is to analyse the problem in the frequency domain. This
should give identical results to the time-domain approach, after a Fourier inversion,
if enough frequency terms are calculated. However, a great many terms would be
required to illustrate the slope discontinuities shown in the following figures. Certain
of the calculated points given here have a spacing of 0.01°; to get equivalent accuracy
in the frequency domain would require of the order of 0.5 (360/0.01) harmonics. To
some extent this accuracy is academic; i.e. it may not be needed for noise prediction.
However, it is very useful when attempting to understand the sound generation
process.

The computer program, consisting of approximately 600 lines of Fortran code, was
developed and all calculations were performed on an Apple Macintosh Plus
microcomputer. Calculations take on the order of twenty minutes per point for the
pressure-time waveform on this computer, but this is highly dependent on the
accuracy required, here specified as approximately fourth-digit; the calculation time
could be significantly decreased by relaxing the accuracy requirement. Double
precision arithmetic was used for all calculations; because of the many parts of the
program where accuracy can be lost (finding zeros, integration of functions that tend
to cancel to zero, etc.) this gives an extra margin of flexibility.

The program simulates a ‘flyover’ with the observer fixed to the ambient fluid ; the
result for a propeller-fixed observer can be calculated by translating the observer
with the propeller and calculating the pressure for the corresponding stationary
observer at each instant of time, since the motion of the observer does not affect the
instantaneous pressure at the observer position.

The calculation begins with determination of the sonic line, given by (7),
representing the locus of rotor points that are sonic with respect to the observer. The
case of an observer fixed to the ambient fluid is simpler than the rotor-fixed-observer
case since the helical path is fixed with respect to the fluid-fixed observer; this allows
a single calculation (valid for all time) of the sonic line. A given point on the edge of
the rotor is sonic with respect to the observer at the time when the point lies on this
line.

For the case of zero forward velocity and an observer in the far field, the sonic line,
Of/0y = 0, is a straight line. To show this, set V' = 0 in (4) and take the y-derivative,
giving R(0f/dy) = (Qyr,/U) sin (y82/U). If 0 denotes the angular position around the
rotor, then 8 = y2/U. Combining these two relations with (7), gives, for the equation
of the sonic line, 7, 8in (0) = constant, (22)
which is the equation of a straight line. The far-field assumption is needed to make
small any relative changes in the factor R, contained in the constant on the right-
hand side. The sonic-point locus is plotted as a dashed line in the figures of the
retarded blade shapes, and is nearly a straight line since V = 0 is assumed for these
results and the observer distance is significantly larger than the rotor radius.

To perform the r -integration in (6), the retarded position of the leading and
trailing edges for the chosen observer position and time of interest must be found.
This involves finding zeros of the function f = {c). Whereas the sonic line need only
be calculated once for a fluid-fixed observer, the retarded blade shapes must be
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FiourE 5. Plot of the function f versus @ showing three zeros at y/s = 13.33, 14.00, 14.83. The
parameters chosen for this particular calculation are Qry/c, = 1.1, r,/s=1,y/s =10,z =M, = 0,
(£2t/27) x 360 = — 177 4.

calculated for each new time point calculated. A sample plot of the function f,
representing approximately two rotor rotations, is given in figure 5. The values listed
for the parameters are the same values used later for the calculated sound ; this is the
case V = 0 for which fis a linear plus a cosine function of y. Given the retarded blade
position, the r,-integral is calculated. This is conceptually simple, but it is the
procedure most likely to give inaccuracies because of the singular points, points that
are nearly singular and multiple singular points that are encountered in (6).

6. Calculated results
6.1. The retarded blade shapes

Plots of the retarded body shape (the retarded positions of each source point on the
body for the time of interest) give insight into the sound production process. This
type of plot was also given by Hanson (1976); it is a natural type of plot to make
since locating the points satisfying f= {c¢) is a necessary intermediate step in
evaluating (6). To make plotting easier, the forward velocity of the rotor is assumed
zero so that the retarded body shape lies in a plane. This case was also chosen to
match that of Hanson (1976), allowing a direct comparison of results.

Figure 6 shows a sequence of these retarded body shapes for the case of an airfoil
with straight leading and trailing edges and a constant chord. The observer lies in the
same plane as the counterclockwise turning rotor. Only the advancing half of the
rotor disk is shown. The sonic line, plotted in these figures as a dashed line, points
towards the observer; it would be exactly vertical if the observer were at infinity on
the axis, but here the observer is only 5 rotor diameters away. The retarded airfoil
shape is significantly distorted from the actual blade shape, and in fact can become
divided into multiple regions. The successive figures are for increments of the
rotation angle & differing by 1° (equal time increments), except for figure 6 (c) which
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Freure 7. Figure 6(c) replotted as r, vs y. The dashed line is the sonic line.

was added to show the behaviour very near the logarithmic singularity in the
pressure-time waveform, which occurs at the merging of the two blade areas. The
extremum points of each of these retarded airfoil regions (the points of local
maximum or minimum r, when plotted versus y) are points at which of/dy = 0.
(f = ¢ defines the edge of the retarded airfoil shape so that df = 0 as one moves
along the edge. But df = (2f/0y) dy+ (3f/0r,) dr, and since dr, = 0 and dy =% 0 at the
extremum, it follows that df/Cy = 0 here.) Thus, the sonic line, Jf/0y = 0, passes
through each of these extrema. For a straight airfoil it appears that the extrema are
always minima, with at most a single extremum on each edge. For a swept blade one
can encounter more than one singular point on the leading or trailing edge; i.e. the
retarded edge may have a region with both local minima and maxima, as will be
seen.

Figure 6 (c) is replotted with y as the abscissa in figure 7, showing more clearly the
extremum point that exists at the bottom of the smaller of the two retarded blade
regions, here referred to as region 2, with the major blade region being labelled region
1. The sonic line, again shown as a dashed line, passes through the minimum of region
2. When the exact time of the logarithmic singularity in the pressure-time waveform
is reached, region 2 in figure 7 meets region 1 at the minimum of the sonic line. (For
a swept blade, the two regions generally do not meet at the minimum of the sonic
line.) Note that the scale has been magnified to show the details of the region more
clearly, and that region 1 comes very close to the sonic line without actually
touching; the time is just prior to the occurrence of the logarithmic singularity.

6.2. Singular and nearly singular points

Points satisfying 0f/dy = 0 are especially important; in addition to being extrema in
a plot of r, vs. vy, they are singular points in the integrand of (6) since the
denominators of the last two terms in this equation contain the factor gf/0y. Figure

8(a) shows the contribution to the integrand, around the minimum point, 7y,
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Fiourk 8. Values of the integrand for the r,-integral in equation (6). The parameters Qr,/c,,
y/s,x, M take the same values as in figure 5, and 6§ = (Qt/2r) x 360 = —177.15, as for figure 6(c).
The dashed line is the radius r,/s = 0.912 of the singular point. /, and t, are the leading- and
trailing-edge contributions from the larger of the two retarded blade areas in figure 6(c). ¢, and
£, are the edge contributions from the smaller area. i is the y-integral in equation (6) from both
blade areas. (b) Shows the total for all the contributions of (a).

shown in figure 7, for each of the various terms in (6). A 10% thickness biconvex
parabolic airfoil, the same as used by Hanson (1976), is assumed with A(y) =
0.4c¢y(1—vy/c). The curve labelled i shows the y-integral term. The remaining four
curves in the figure represent the second and third terms in (6); two of these, ¢, and
t,, represent the leading- and trailing-edge contributions from region 1 and the
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remaining two curves, £, and ¢, represent the singular contributions from region 2.
Beginning at 7y > ry,,, and approaching 7., the integrand approaches infinity,
generally as Ar;? but as Arg! at the time of the logarithmic singularity, where
Ary = |ry—74ingl. There are two contributions of this type since a line drawn at constant
7o in figure 7 cuts the perimeter of region 2 at two points, both satisfying f=0
representing the leading edge. When r, decreases to a value less than 7, the
contribution to the integrand from region 2 immediately drops to zero. This singular
behaviour must be properly treated when performing a numerical integration over
Ty

Another difficulty is produced by what will here be called ‘near singularities’. This
describes very small regions where the integrand becomes large, but not infinite.
Whereas a singular point can readily be located by noting where 0f/dy changes sign,
the near singularities are not so easily found. A near singularity can arise whenever
the retarded source region passes near, but does not intersect, the sonic line given by
df/dy = 0. Such a case is shown in figures 6(c) and 7 where the border of region 1
bulges outward towards the sonic line. On moving along the border of region 1 the
factor Qf/dy becomes very small, but never changes sign. The resulting near
singularity is shown in figure 8 (a); an attempt to locate these regions by searching
for rapid changes in the magnitude of the integrand may fail if the step size is too
large. A closely related problem occurs if two singularities are more closely spaced
than the integration step size. Then a routine looking for a change in sign of of/dy
can miss both points if a calculation point does not fall between the singular points.
Such closely spaced singular points will be seen in the swept-blade cases to follow.

The time corresponding to the case in figure 7 (and for figure 11 (¢) to be discussed
later) was chosen to lie very near to the logarithmic singularity where region 1
approaches very near to the sonic line. As previously noted, at the exact time of the
logarithmic singularity, the coefficient of the Ary-term in (11) is zero; in this case,
retaining additional terms in (11), the relation between Ay and Ar, near the
singularity is 9 2R 2

%—y—lg(Ay)2+2 ¢ AyAr0+%(Aro)2+... =0. (23)
This is quadratic and has two solutions. Thus, Ay and Ar, are related in a linear
manner, but with two possible slopes emanating from the singular point. This
explains the appearance of the corners in the retarded blade shape in figures 6 (c) and
11(c). Instead of skirting past the singular point at a reasonable distance, the
retarded edge line moves directly towards the singularity then directly away from it.
The singularity is never quite reached (unless the time equals precisely the time of
occurrence of the logarithmic singularity), but may be approached very closely,
forcing the denominator of the second or third terms of (6) very close to zero and
producing the near singularity. Thus, these nearly singular points are found near the
time and radius of a logarithmic singularity.

Figure 8(b) shows the result from combining the separate terms of figure 8(a). The
combined result drops to zero much more quickly than the individual terms as one
moves away from the singular point, showing some cancellation between the various
terms. Also, it is noted that even if the two singular contributions have been properly
computed, a very fine integration scheme is needed to properly account for the very
peaked but non-singular contribution.

Performing the r,-integration gives the pressure at the observer due to all source
points. If this is repeated for many time values, a plot of the sound pressure vs. time
can be made. Such a plot for the same straight-blade case is shown in figure 9. It

Oy dr,
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Ficure 9. Pressure-time waveform for the straight-blade case in figure 6. #,,...,6, and 8, , are
given by 6, = —178.78, 6, = —175.50, 6, = —174.19, §, = —170.92, §, = —177.14, 8, = —172.10.

should be emphasized that no smoothing was done in the creation of this or any of
the plots in this paper. All plots were made by a computer-controlled plotter
connecting calculated points by straight line segments. This, of course, requires a
great many calculated points to get a smooth curve, but it does illustrate the
accuracy of the program and gives assurance that there is no prejudicial input on the
part of the artist. The abscissa 6 represents the angular position of the rotor at the
corresponding time. Thus, the abscissa can also be considered a time axis since the
angle is linearly related to the time. The angular range & of the rotor is negative as
shown, but would be positive if the next rotor rotation were used for the calculations.
The spacing of the calculated points was 0.1° or 0.05°, except near the logarithmic
singularities and near the regions of abrupt slope change, for which the spacing was
decreased to 0.01°.

The most prominent feature of this plot is the appearance of two singular points.
These are the logarithmic singularities; they appear where the factor multiplying
Ar, in (11) (repeated in (14)) becomes zero. Because linear theory gives a singularity
at these points, one cannot calculate a magnitude for the peak. The value calculated
for the trough, however, can be compared with the previous calculation of Hanson
(1976) for this case. Hanson gives p/p,c2 = —0.013, while the present calculation
gives —0.012970 for the minimum value attained. The present result thus agrees
with that of Hanson, but Hanson’s result does not resolve the fine detail shown in
figure 9; the relatively flat botom of the curve is not at all evident. A similar, but not
identical case, calculated in the frequency domain, is given in figure 5 of Hawkings
& Lowson (1974), but this also fails to show the fine detail.

6.3. Points of abrupt change of slope
In addition to the logarithmic singularities in the plot of pressure versus time, there
are points, 6,, 6,, 6,, 8,, where the plot abruptly changes slope. These points
correspond to the appearance or disappearance of the second retarded blade source



554 R. K. Amiet

region. As noted from figures 6 and 11, this new region originates at the blade tip and
grows inward. (The sequence of events is slightly different for the 50° sweep case.)
Since there is always a singular point at the minimum r,-value of region 2 shown in
figure 7, when region 2 first arises it does so with the appearance of a singularity at
the tip. This occurs when the leading edge becomes sonic at the tip with respect to
the fluid-fixed observer; the appearance of the source region is shown at the upper
end of the sonic line near the 30° angle of the rotor disk at a time between the values
of figure 6 (a) and (b). The region then expands as the singularity moves inward along
the edge. 0, corresponds to the disappearance of the singular point from the rotor
leading-edge tip around the angle of —25°, as shown in figure 6(¢) in which one can
just see region 2 at the lower end of the dashed sonic line. 8, and 6, relate to the
trailing edge, around the times corresponding to figures 6(g), which shows the
appearance of a singular point, and 6(j) which shows its disappearance. These
0,-values can readily be calculated in the following manner: (i) calculate the two
v-values of the sonic line at the tip; (ii) introduce these into (4) to find the
corresponding R values; (iii) introduce these y- and E-values into (8) from which four
values of time ¢ can be determined ; 6 then follows from 6 = Q.

The slope of the pressure-time waveform is infinite at these 0-values. Since the
velocity v, of the singular point along the edge is generally non-zero when the
singularity enters the tip, the distance d of the singularity from the tip is d = v, At for
small At =t—t,, where ¢, is the time of appearance of a singularity at the tip.
Performing the r,-integral in (6) over the ry: singularity gives, for the contribution
of the newly formed region,

d
I~ J Yo _ ogh = (v, At} (24)

o 7%
The time derivative, or slope, thus varies as (At)"* near each 6, ...,6, value; this is

infinite for At = 0.

The relative importance that the various portions of the pressure-time waveform
have in generating the overall acoustic intensity at the observer is found by squaring
the pressure and integrating with respect to time with a variable upper limit. Figure
10, with the upper limit as abscissa, shows that singular regions are important, but
do not dominate over the remainder of the waveform. The large negative portion of
the waveform is somewhat more important for this particular case.

6.4. Effect of sweep

The result of sweeping the blade a moderate amount, but not enough to eliminate the
logarithmic singularities is shown in figures 11 and 12. The rotor blade is identical to
the straight blade, except for the tip region, which is swept back at approximately
a 20° angle, keeping constant the chord measured along y. The planforms for the
three cases of straight blade, 20° and 50° sweep are shown in figure 13 (k—j); these
plots are created from the same program and blade inputs used for calculating the
retarded blade shapes and pressure, but now assuming zero Mach number. Defining
r, as the value of r, at the break point 4 in figure 3 where the airfoil begins to sweep,
the blade definition for ry > 7, is

Yo = X(ro—1y) = 196, (25a)

where y = tan (20°) for figures 11 and 12 and 7y, is the arc DE. This definition was
simpler than a constant angle of sweep since the definition was made in the (r,, v)-
coordinate system, but as noted from figure 13(¢) and (j), the deviation from a
constant sweep angle is small. The value of ¢ is not needed in the calculations, but
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Fieure 10. Time integral of the acoustic infensity at the observer as a function of time (angle).

can be used in the following equation to find the local slope & of the blade. From the
geometry of figure 3, tan (9—e)+e = x. (25b)
For values of € not too large, tan ¢ is nearly constant and close to the value assumed
for y.

The retarded blade shapes in figure 11 are topologically quite similar to those in
figure 6. The time between plots is now not fixed at 1° increments to allow selection
of the most interesting cases. Figure 11 (¢) shows the retarded blade shape at a time
very near to but just before the appearance of the logarithmic singularity. The two
separate blade regions have not quite merged yet; enlarging the region near the
merger point would show the two retarded blade areas to be in the shape of two
corners that have not quite met. The points §,, ..., 8, are determined by the time at
which the tip of the leading or trailing edge intersects the sonic line; since the sonic
line is the same for both cases, as is the airfoil chord measured along the y-coordinate,
the spacing between these points is the same in figure 12 as in figure 9. The
logarithmic singularities, §, and §,, have shifted left relative to &,,...,6, when
compared to figure 9. The minimum in the curve is now p/pc = —0.01135, not
radically different from the value for the straight-blade case. One notes that the
relatively flat portion of the curve between 8, and 4, in figure 9 has now begun to tilt
upward to the right.

One additional point worth noting is that several singular points in the r -integral
can now exist on the leading or trailing edge. Thus, three singular points in the
ro-integral are evident on the leading edge of figure 11 (b). The two singular points
produced at the two corners noted above lie very close to one another, and provision
must be made in the computer program for resolution of the points. Two closely
spaced points are also found for a very short time slightly prior to that shown in
figure 11(b) when the rotor retarded planform just crosses the sonic line.

Figures 13 and 14 show similar calculations for the 50° sweep case (y = tan (50°)).
This calculation is more subject to error than the 20° case, because of the significant
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FicURE 12. Pressure-time waveform corresponding to figure 11. 6,...,6, and S, , are given by

6, = —174.61, 6, = —171.33, 6, = —170.02, 6, = —166.75, S, = —174.35, S, = — 169.48.

cancellation produced by the sweep in the radial integration. The logarithmic
singularities, S, and §,, are no longer present; their absence means that blade areas
cannot split off or merge inboard of the tip. Thus, as time proceeds from figure 13 (¢)
to (g), the ry-singularity moves upward towards the observer along the sonic line.
The second blade area does not split off as in figures 6(¢) and 11 (k) (which would
produce a logarithmie singularity); rather, the r, singularity first reaches the rotor
tip, defining the 6, point and beginning a rapid decrease in the far-field pressure. A
dramatic reduction in the sound results when compared to the straight-blade and 20°
sweep cases.

The spacing of the points 6, ..., 6, is the same as for the straight-blade and the 20°
sweep cases. The effects produced by the points 6,,...,6, has changed, however.
Thus, for the straight-blade case ¢, is the angle at which the second area along with
a singular point (representing a minimum in the r, vs. y curve as in figure 7) are
created just prior to figure 6(b), beginning an increase in the pressure waveform. For
the 50° sweep case, 0, is the angle at which a singular point (representing a maximum
in the r, vs. v curve) leaves the blade just prior to figure 13(c), beginning a decrease
in the pressure. Whereas the singularity for the straight-blade case gives a
contribution to the integral for r, > r,, (where ry,, denotes the radius at the
singular point), the singular point for the 50° sweep case gives a contribution to the
integral for ry < 7. 6, and 6, are produced by similar circumstances for the straight
and 50° sweep cases, but 6, marks a singular point entering the straight blade, just
prior to figure 6(g), beginning an increase in the pressure waveform, while 6, marks
the disappearance of a singular point from the 50° swept blade, just after figure 13 (e),
beginning a decrease in the pressure waveform.

One might look to the possibility of varying the timing of the 0,,-values as a means
to control the sound. For any given span and angular velocity the spacing between
the pair 8,, 8, is fixed for any given observer position, as is that between the pair
f,, 6,. The first of these pairs is produced by the leading edge at the tip crossing first
one end then the other end of the sonic line; the second pair is produced in a similar
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FiGuRE 14. Pressure-time waveform correspoﬂding to figure 13. 6,,...,0, are given by
6, = —165.12, 6, = — 161.85, 6, = — 160.54, 6, = — 157.26.

manner by the trailing edge. Changing the chord does not change the spacing
between these pairs. However, the spacing between 6, and 6, (or between 6, and
6,) is dependent on the value of the chord at the rotor tip, since the 6,, 8, spacing
is determined by the time between when the leading edge crosses one end of the sonic
line and when the trailing edge crosses the same point. The time ¢, between 6, and
0, is t, = ¢/U; thus, for the present ¥V = 0 case the angular spacing between these
points is Qt, = c¢/s = 4.58° for ¢/s = 0.08, agreeing with figures 9, 12 and 14. The
capability of varying the spacing between #, and 6, by varying the chord at the tip
might be worth further investigation as a means of noise control. The 8, values do
not give the complete explanation of the waveform, however. Thus, in figure 14 there
is a sharp increase in the pressure waveform between 4, and 8,, even though there are
no singular points entering or leaving the tip of the blade.

7. Conclusion

Success in the reduction of the thickness noise produced by a propeller is
dependent on understanding the mechanism of sound production. The preceding
analysis and comparison with numerical calculations gives a better description of the
sound generation process than previously available. The numerical techniques used
completely eliminate the sometimes erratic behaviour of previous calculations and
show that the result for linearized flow should be a perfectly smooth pressure—time
waveform, except at the logarithmic singular points, and at four other points at
which the slope changes abruptly for an airfoil with a sharp leading edge. These
abrupt slope changes are produced by a singular point entering or leaving the rotor
at the tip. The results show the feasibility of performing calculations in the time
domain, which has sometimes been bypassed in favour of frequency-domain
calculations in order to avoid certain computational difficulties, even though the
time-domain calculation may be more instructive. Although the initial programming
task is difficult for the time-domain calculation, it need only be performed once.

Examples have been given for three straight- and swept-blade cases, consisting of
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nearly straight line segments for the leading and trailing edges. Tt should be
emphasized that the general case of a blade with a smoothly increasing sweep near
the tip is a more realistic one and may produce a waveform that looks somewhat
different. It should be possible to significantly influence the waveform by changing
the sweep, chord and thickness distribution. Nevertheless, all waveforms will exhibit
the four points 6,, ..., 8, as distinct features since they are produced whenever either
the leading or trailing edge crosses the sonic line. An exception to this would appear
to be the case where the chord has tapered to zero at the tip; the leading and trailing
edge f-values are then superimposed, ¢, on 6,, and 6, on 6,.

Logarithmic singularities may also be present, although a proper blade design
should eliminate them. They may be prevented for a given observer by avoiding
areas on the blade that can move sonically relative to an observer while simul-
taneously having the edge normal to the source-observer line. To eliminate the
logarithmic singularities throughout the flow field requires that the component of the
rotor-blade Mach number normal to the edge be everywhere subsonic. Hopefully,
understanding these logarithmic singularities together with an understanding of the
role played by the four 6,-values, as well as the ability to adjust the spacing between
them to some extent, will prove useful in noise reduction.

This paper is dedicated to Professor William R. Sears on the occasion of his 75th
birthday.
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